Course Contents

- 1. Give details of the course, on the following lines:
 - a. Course Code ESE-823
 - b. Title Thermal Hydraulics

3

- c. Credit Hours
- d. Objectives

The objective of the Thermal Hydraulics course is to provide an overview of the essential thermal processes related to fluid flow and heat transfer that take place in thermal power plants. The objectives of this course are;

- (1) To enlighten the essential concept of single phase flow
- (2) To describe the phenomenon of two phase flow
- (3) To discuss the single phase heat transfer
- (4) To provide knowledge of two phase heat transfer and study its application in thermal power plants
- (5) To design and analyze the heat exchanger for thermal power plants
- (6) To discuss the thermal loops and applications in thermal power plants
- e. Outcomes
 - (1) The students will be familiarized with single and two phase flow
 - (2) The course teaches the essentials of two-phase flow systems, including flow regime maps, void-quality, pressure drop, and critical flow
 - (3) The students learn the heat transfer in single and two phase
 - (4) The course develops the concept of boiling heat transfer, and its implications
 - (5) The students will differentiate between different types of heat exchanger and will help them to design heat exchanger for CPP, commercial NPP and STP.

- (6) The students will understand the phenomenon behind the production of steam which spin turbine and generate electricity in thermal power plants.
- f. Contents with suggested contact hours

No.	. Topics		Book	Contact
				Hours
(1)	Single Phase Fluid Dynamics		ΤK	6
	(a)	Introduction	FM	
	(b)	Flow analysis techniques		
	(c)	Flow patterns		
	(d)	Differential relations for a fluid particle		
	(e)	Inviscid flow		
	(f)	Viscous flow		
	(g)	Laminar flow inside a channel		
	(h)	Turbulent flow inside a channel		
	(i)	Pressure loss coefficient at abrupt area		
		changes		
	(j)	Dimensional Analysis		
(2)	Single Phase Heat Transfer		ΤK	6
	(a)	Fundamentals of Heat Transfer	YC	
	(b)	Heat Conduction		
	(c)	Laminar Heat Transfer		
	(d)	Turbulent Heat Transfer		
	(e)	Fundamentals of Convection		
	(f)	External forced convection		
	(g)	Internal forced convection		
	(h)	Natural convection		
	(i)	Radiation heat transfer		
(3)	Two	Phase Fluid Dynamics	TK	8

	(a)	Introduction		
	(b)	Flow patterns and maps		
	(c)	Void quality slip relation		
	(d)	Two phase flow models		
	(e)	Pressure drop relations		
	(f)	Critical flow		
(4)	Two	8		
	(a)	Boiling heat transfer	YC	
	(b)	Pool boiling		
	(c)	Film Boiling		
	(d)	Subcooled boiling		
	(e)	Saturated boiling		
	(f)	Critical Heat Flux		
	(g)	Condensation		
	(h)	Film Condensation		
	(i)	Dropwise condensation		
(5)	Heat Exchangers		5	
	(a)	Types of Heat Exchanger		
	(b)	Overall Heat Transfer Coefficient		
	(c)	Analysis of Heat Exchanger		
	(d)	Log mean Temperature difference		
		Method		
	(e)	Effectively Design Shell-and-Tube Heat		
		Exchanger		
(6)	The	ermal Power Systems	ТК	12
	(a)	Solar thermal Power Plant	DB	
	(b)	Nuclear Power Plant		
	(c)	Coal Power Plant		
	45			

g. Details of lab work, workshops practice (if applicable).

No lab is required.

h. Recommended Reading (including Textbooks and Reference books).

S #	Title	Author(s)	Assigne	Remarks
			d	
			Code	
(1)	Nuclear System I:	N.E. Todreas, and	ΤK	Text Book
	Thermal Hydraulic	M.S.Kazimi		
	Fundamentals			
(2)	Boiling heat	L. S. Tong, and Y. S.	TT	Reference
	transfer and two-	Tong		
	phase flow, 2 nd Ed			
(3)	Heat Transfer: A	Yunus A. Cengel	YC	Text Book
	Practical Approach			
(4)	Fluid Mechanics	Frank White	FM	Reference
(5)	Steam Plant	E. B. Woodruff, H. B.	WL	Reference
	Operation, 9 th	Lammers, and T. F.		
	Edition	Lammers		
(6)	Solar Engineering	J. A. Duffie, W. A.	DB	Reference
	of Thermal	Beckman		
	Process, 3 rd Edition			
(7)	Nuclear Heat	M. M. El-Waqil	EW	Reference
	Transport,			
	International, 1981			